A feasible direction interior point algorithm for nonlinear semidefinite programming
نویسندگان
چکیده
We present a new algorithm for nonlinear semidefinite programming, based on the iterative solution in the primal and dual variables of Karush-KuhnTucker optimality conditions, which generates a feasible decreasing sequence. At each iteration, two linear systems with the same matrix are solved to compute a feasible descent direction and then an inexact line search is performed in order to determinate the new iterate. Feasible iterates are essential in applications where feasibility is required to compute some of the involved functions. A proof of global convergence to a stationary point is given. Several numerical tests involving nonlinear programming problems with linear or nonlinear matrix inequality constraints are described. We also solve structural topology optimization problems employing a mathematical model based on semidefinite programming. The results suggest efficiency and high robustness of the proposed method.
منابع مشابه
A path following interior-point algorithm for semidefinite optimization problem based on new kernel function
In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...
متن کاملA path-following infeasible interior-point algorithm for semidefinite programming
We present a new algorithm obtained by changing the search directions in the algorithm given in [8]. This algorithm is based on a new technique for finding the search direction and the strategy of the central path. At each iteration, we use only the full Nesterov-Todd (NT)step. Moreover, we obtain the currently best known iteration bound for the infeasible interior-point algorithms with full NT...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملFirst- and second-order methods for semidefinite programming
In this paper, we survey the most recent methods that have been developed for the solution of semidefinite programs. We first concentrate on the methods that have been primarily motivated by the interior point (IP) algorithms for linear programming, putting special emphasis in the class of primal-dual path-following algorithms. We also survey methods that have been developed for solving large-s...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کامل